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Executive Summary 

This deliverable presents the use cases, system requirements and architecture of the AIoTwin data-driven 

orchestration middleware. It contains an analysis of the current state of the art in the field of Artificial 

Intelligence of Things (AIoT), focusing on three specific research areas: orchestration in the edge-to-cloud 

continuum, federated and decentralised learning, and robust energy-efficient IoT. Following the state of 

the art, Section 3 describes relevant use cases intended for testing the developed middleware, associated 

mechanisms, and algorithms. Two general use cases are foreseen, the first one in the context of smart 

city for traffic management and the second one on smart agriculture and continuous monitoring of plants 

and their environment. In the same section, the available datasets for each use case are listed. Section 4 

identifies the middleware requirements and lists specific requirements for each use case. The next section 

defines the AIoTwin middleware architecture. It starts with a general architecture for the orchestration of 

machine learning (ML) pipelines with a description of its generic components. It then refines the general 

architecture to define a more specific architecture for three specific AIoT problems: 1) adaptive 

orchestration of federated learning (FL) pipelines, 2) QoS-aware load balancing for inference services in 

the edge-to-cloud continuum, and 3) inference for efficient and energy-aware communication. 
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1 Introduction 

1.1 Deliverable context and description 

Work Package 1 (WP1) comprises the tasks and activities of the AIoTwin Joint Research Project, which 

incorporates the contributions and expertise of all AIoTwin partners. In this joint research, we are 

focussing on the following goals: 

- Develop a data-driven orchestration middleware for energy-efficient IoT supporting ML 

workflows. 

- Investigate the mechanisms for orchestration of containers across the edge-to-cloud continuum. 

- Run and test the middleware on the available infrastructure of all consortium partners. 

This research is related to the following three AIoTwin research domains: 

- Orchestration in the edge-to-cloud continuum, 

- Federated and decentralised  learning and 

- Robust and energy efficient IoT. 

In this work package, we will develop an edge orchestration middleware that proposes the placement of 

ML models in the edge-to-cloud continuum, taking into account data streams originating from many 

heterogeneous IoT devices, and explore the energy efficiency of edge orchestration deployments 

supporting ML workflows. In addition to optimising the placement of containers running AI/ML algorithms 

considering the available resources, QoS constraints and overall energy consumption, the focus is also on 

managing ML workflows and data routing in the edge-to-cloud continuum. 

This middleware will be the result of joint research activities within WP1; however, it will be driven by 

research questions posed and investigated mainly by PhD students from UNIZG-FER participating in the 

AIoTwin project which are also relevant to their dissertation topics. The developed middleware will be 

published as open source in the AIoTwin GitHub repository (https://github.com/aiotwin) and will consist 

of libraries and components that can be used in different use cases in the field of smart city and smart 

agriculture which are introduced in Section 3. 

1.2 Deliverable outline 

This document is organised as follows. Section 2 analyses the current state of the art in the field of Artificial 

Intelligence of Things (AIoT). Section 3 identifies and discusses relevant use cases and available datasets. 

After describing the use cases, Section 4 identifies and describes the requirements for the middleware. 

Some requirements are general in nature, while others are specific to a particular use case. Section 5 

presents the general AIoTwin architecture and introduces specific architectures for each of the envisaged 

use cases, which are defined as refinements of the general architecture. Section 6 concludes the 

deliverable and Section 7 contains a list of acronyms used. A list of figures, tables and references can be 

found at the end of the document.  

https://github.com/aiotwin
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2 State-of-the-art analysis 

Internet of Things (IoT) solutions are inherently distributed and decentralised as they connect 

heterogeneous devices to the Internet via various communication technologies and enable the 

transmission of sensed data from the environment to nearby devices at the edge of the network and the 

forwarding of data to remote servers in the cloud in a so-called computing or edge-to-cloud continuum. 

In addition, IoT solutions facilitate actuation at the edge of the network by forwarding decisions and 

signals from the cloud or from nearby edge servers to devices or machines (e.g. robots) with actuation 

capabilities.  

AI algorithms and concepts are being integrated into the edge-to-cloud continuum to analyse and learn 

based on data continuously generated by many devices to make decisions, predict future activities and 

autonomously operate devices at the edge of the network. Therefore, a new concept known as Artificial 

Intelligence of Things (AIoT) has emerged [1]. It brings artificial intelligence into the physical environment 

and requires novel machine learning (ML) approaches that are adapted to edge resources and the 

characteristics of the edge-to-cloud continuum while being able to process data that is continuously 

generated in the real physical environment. AIoT breaks down the boundaries between the physical and 

digital worlds and opens up new possibilities for device intelligence and autonomy in the physical 

environment, which is important for a wide range of applications, from smart factories and agriculture to 

the smart cities of the future. 

AIoT also poses particular challenges for the field of artificial intelligence. A distributed and heterogeneous 

environment with limited resources in terms of available computing power and energy requires the use 

of efficient algorithms that are adapted to the distributed environment and utilise appropriate service 

orchestration in the continuum [2]. As data processing takes place in real time, machine and deep learning 

algorithms need to be adapted, bearing in mind that data streams from IoT devices are often incomplete, 

prone to errors, and unlabelled. In addition, AIoT systems must adhere to strict privacy and security 

requirements to protect sensitive user data and ensure the integrity of the devices and physical 

environment. Also note that energy efficiency is an important requirement in AIoT environments that 

utilise edge devices. Below we provide a brief overview of the latest solutions for edge orchestration, 

federated and decentralised learning and energy-efficient IoT that are relevant to the middleware to be 

developed and implemented as part of the AIoTwin project. 

 

2.1 Orchestration in the edge-to-cloud continuum 

Most of today’s IoT data traffic is transmitted over the Internet towards remote cloud servers for 

processing or storage. However, such an architectural approach gradually overloads the network, 

lengthening the overall processing cycle for IoT services and reducing responsiveness to events detected 

in local intelligent environments. The concept of Edge-to-Cloud Continuum (ECC) has been developed to 

reverse this trend and significantly reduce the traffic generated towards the cloud by enabling the 

processing of IoT data closer to the data sources. 
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Figure 1. Abstract view of the edge-to-cloud continuum 

 

In the ECC, the devices are organised hierarchically in layers, as shown in Figure 1. The top layer is a cloud 

computing layer with devices placed in the cloud. The subsequent layer between the cloud and IoT devices 

which are placed at the bottom of the continuum is the edge computing layer hosting edge nodes. It is 

divided into two parts: The upper part is called the near edge, as it is located close to the cloud, while the 

lower part is called the far edge. The bottom layer is the IoT device layer, which mainly contains resource-

constrained IoT devices, while edge nodes are also resource-constrained compared to the cloud. A more 

detailed description of the units in each layer of the continuum can be found in [3]. It is important to note 

that each layer offloads the upper layer and performs a part of continuum functions. In addition, the 

nodes within the same layer are interconnected to share the processing load and optimise the placement 

of the deployed services. In this way, the processing and storage capacities are brought closer to the end 

IoT devices, which offers the possibility of achieving the following crucial objectives of the IoT concept [4]: 

reduced overall network traffic, improved responsiveness and shorter processing cycles, improved 

security with privacy control and lower operating costs. 

In an ECC environment where end devices and edge nodes are constantly changing their state and 

location, manual management of services becomes complex and should be avoided by using an 

automated approach enabled by a suitable general purpose orchestration tool, e.g., Kubernetes, 

KubeEdge, K3s or ioFog. Thus, services running on the edge nodes should be orchestrated automatically 

to ensure their high availability. 

Service orchestration in the ECC implies scheduling, deploying and managing services based on a specific 

scheduling policy within a dynamic and unstable execution environment. The challenge of implementing 

efficient service orchestration has been analysed mainly in the scope of cloud administration before the 

emergence of edge computing [5]. Thus, different approaches and orchestration systems already exist, 

but they must be adapted to become more suitable for the edge computing environment. Current 
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implementations of orchestration tools typically involve many features and capabilities to ensure system 

scalability and reliability across cloud environments. However, such capabilities make them resource-

demanding and often too heavy for IoT devices and edge nodes. Furthermore, as many features needed 

for the cloud infrastructure are not critical in edge computing use cases, their number could be reduced 

to achieve optimized and lightweight versions of existing orchestration tools. Such versions should 

primarily include features necessary to execute efficient orchestration in the edge computing 

environment, where the emphasis is on specific performance targets rather than goals critical for cloud-

based systems [6]. 

Edge services handling IoT data must be autonomous, stateless, and portable to ensure short migrations 

and high availability. Container virtualization is preferred for easy migration and reduced startup time. 

Thus, efficient service orchestration with containerized IoT components is essential for ECC benefits. A 

relevant survey examining containerization and scheduling of edge services is detailed in [7]. The authors 

offer insights into Kubernetes and Docker Swarm schedulers, along with algorithms utilized for efficiently 

scheduling container-based services in edge computing contexts. Additionally, in [8], the authors present 

a survey on edge orchestration, particularly focusing on container orchestration tools. A similar 

investigation is outlined in [9], which evaluates the performance implications of using Docker containers 

for IoT applications in fog computing setups. The authors propose a framework for deploying IoT 

applications at the edge using Docker Swarm. Furthermore, a comprehensive exploration of fog/edge 

orchestration challenges is documented in [5], where the authors provide an overview of the state-of-the-

art of service orchestration and discuss technologies aimed at addressing major orchestration hurdles. 

 

2.2 Federated and decentralised learning 

The traditional ML pipeline assumes that data is collected and trained in a centralised cloud location. 

However, this approach comes with privacy concerns, as the data is available in raw format to both the 

services executing the training and the cloud providers. Also, the cost of sending the data to the cloud and 

the cost of storing and processing this data calls into question the viability of these solutions. 

 

2.2.1 Federated learning 
Federated learning (FL) is proposed to address the aforementioned privacy and network-related 

challenges by allowing the model to be trained on a federation of participating devices without the need 

to store the data centrally [10][11]. The collected data remains on the IoT devices (in FL they are referred 

to as clients) and only model updates are sent to the central coordination server (aggregator). The models 

obtained are then aggregated and sent back to the FL clients. This approach ensures data privacy and 

saves network bandwidth as the raw data does not leave the source devices, but only in situations where 

the models are smaller compared to the raw data. In addition, by distributing the training task across 

different devices, the computing and storage costs of the central server are significantly reduced, while 

the storage capacity and processing capabilities on the clients must be increased. 
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2.2.2 Decentralised  learning 
Training ML models on data distributed across individual devices, known as peer-to-peer (P2P) learning, 

presents a significant challenge in applications like traffic flow analysis or environmental monitoring. 

While data is generated on each device, privacy concerns prevent its direct sharing. This poses a dilemma: 

• Centralised learning: Moving all data to a central server for training is infeasible due to privacy 

constraints. 

• Local learning: Training models solely on individual devices leads to limited accuracy and 

inconsistency across the network. 

Gossip learning emerges as a powerful solution for collaborative learning in such scenarios to address 

these challenges. The idea is for local ML models to be disseminated within the network using random 

walks in parallel, while applying an online learning algorithm to improve themselves, and getting 

combined via ensemble learning methods. The algorithm is extremely robust, prediction is possible at any 

time in a local manner, and it has low communication complexity [12]. 

Gossip learning uses peer sampling protocols so that a node can initiate a random walk over the entire 

network of nodes. Peer sampling in distributed systems refers to the process where each node maintains 

a dynamic and representative subset of nodes (peers) in a network. This subset, often referred to as a 

"sample" or "neighbourhood," provides a snapshot of the network's topology and helps facilitate efficient 

communication, resource discovery, and various distributed algorithms. The goal is to have an up-to-date 

view of the network without maintaining a full and exhaustive list of all participating nodes, which can be 

impractical in large-scale and dynamic distributed environments [13]. 

Overall, gossip learning provides a promising approach for decentralised  learning, enabling collaborative 

model development while maintaining privacy and offering robustness and scalability for large-scale 

applications. However, it brings new challenges related to model convergence and accuracy as well as 

communication costs. 

 

2.3 Robust and energy efficient IoT 

Energy efficiency is a major concern in the field of IoT, where limited resources and limited power sources 

require careful management of energy consumption. By focusing on energy efficiency when developing 

middleware, you can realise the full potential of IoT technologies while minimising the impact on the 

environment and operating costs. By optimising energy consumption, middleware can reduce 

consumption, extend device lifetimes and improve scalability. In addition, energy-efficient nodes play a 

crucial role in supporting ML workflows in IoT systems that utilise ECC. ML algorithms often require 

significant computing resources, and energy-efficient nodes ensure that these resources are used wisely. 

By optimising energy usage during ML model inference and data processing tasks, the middleware enables 

efficient execution of ML workflows without overloading individual nodes. In this sense, a node can be 

any connected device that has enough resources to run services via a selected virtualisation engine, e.g. 

Docker containers or WebAssembly runtimes [14]. 

WebAssembly (Wasm) is a standardised binary instruction format developed for efficient code execution. 

It serves as a low-level and portable representation of programmes and enables high-performance 
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execution of applications. Wasm is intended as a common compilation target for different software so 

that the code can be executed at near-native speed. In this context, Wasm plays a promising role in 

promoting energy-efficient IoT. This is achieved by optimising code execution, which reduces the memory 

and computational power requirements of IoT devices [15]. This optimised execution results in lower 

energy consumption and ensures more efficient device operation. By promoting local computation, the 

need for extensive data transfers over networks is reduced, which significantly lowers energy 

consumption, especially in scenarios where data transfer consumes a lot of energy. Its platform 

independence ensures the smooth execution of applications on different IoT device architectures and 

promotes standardised and energy-optimised applications. In addition, Wasm's sandbox execution 

environment helps to effectively manage resources, control unnecessary access and optimise resource 

usage, contributing to better overall energy management.  

With Wasm, ML models can be compiled and executed directly on IoT devices, enabling efficient and 

decentralised processing. This approach is particularly useful for scenarios where real-time or edge 

computing capabilities are critical, helping to reduce the need for constant data transfer to centralised 

servers. Wasm's portability and ability to run code at near-native speeds make it a suitable choice for 

deploying ML models on a variety of IoT devices, providing opportunities for on-device inferencing and 

data processing. However, the specific feasibility and performance will depend on the complexity of the 

ML model, the resources available on the IoT device and the optimisation techniques applied during 

compilation. 

 

3 Use cases 

The following two use cases are proposed and examined to drive the requirements and design of the data-

driven orchestration middleware developed within the AIoTwin project: 

- Smart City and traffic management 

- Smart Agriculture 

These use cases are chosen because project partners have existing experience and results in those 

domains stemming from previous or current research projects.  

 

3.1 Smart City and traffic management 

As global forecasts predict [16], cities are experiencing continuous growth in size and population. This 

rapid urbanisation presents significant challenges for urban life and puts a strain on resources and services 

such as healthcare, education, infrastructure and transport. To ensure the sustainability of these services, 

cities need to use innovative approaches to data management that enable better planning of urban 

infrastructure and predictive maintenance, for example to plan new roads, bridges or pavements to 

reduce emissions from cars or to create parks and green roofs to reduce temperatures in summer.  

A promising approach to improve sustainability of cities is the concept of smart cities. A smart city is an 

urban area where IoT technologies and data collection help improve the quality of life as well as the 

sustainability and efficiency of city operations [17]. A data-driven approach leads to an efficient use of 
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resources and a reduction in environmental impact with positive effects on sustainability, while optimised 

city management and decision-making through data-driven insights leads to improved operational 

efficiency. Ultimately, the quality of life is improved through better services and infrastructure, which in 

turn improves the well-being of citizens. 

At the heart of smart city initiatives lies IoT: It is an enabling technology that allows for the pervasive 

digitization of infrastructure, bridging the gap between physical and digital world. IoT enables ubiquitous 

connection of devices to the Internet, allowing them to send information to the upper layers of the ECC, 

as shown in Figure 1, and potentially to receive directions for performing actions. IoT involves the 

collection of data from the physical world and performing data analytics to extract information from this 

vast amount of data to support decision and policy making at different city levels.  

A smart city is made up of several components [17]:  

• Smart transport – reducing traffic problems, such as congestion, pollution, scheduling, cost 

reduction for public transport, etc.  

• Smart energy – reducing the energy consumption of city infrastructure, e.g., city lights, improved 

energy consumption and automatization of buildings, etc.  

• Smart services – maintaining constant supply of water, waste management, environmental 

monitoring, etc.  

• Smart homes/buildings/offices – installing ambient sensors, motion trackers, power/energy 

consumption, etc.  

• Smart health – decreasing cost of healthcare, ensure healthcare is available to as many people as 

possible utilizing AI, etc.  

The focus of AIoTwin will be on smart transport or traffic management. 

Transportation systems are among the most important infrastructures in modern cities, enabling the daily 

commuting and travelling of millions of people. With rapid urbanisation and population growth, transport 

systems have become increasingly complex. Modern transport systems include road vehicles, rail 

transport and various shared transport modes that have emerged in recent years, including online ride-

hailing, bike-sharing and e-scooter sharing.  

In the development and operation of smart cities and intelligent transportation systems (ITSs), traffic 

states are detected by sensors (e.g. loop detectors) installed on roads, subway, and bus system transaction 

records, traffic surveillance videos, and even smartphone GPS (Global Positioning System) data collected 

in a crowd-sourced fashion, while output typically tends to depend on the use-case. Some of the traffic 

managements examples are:  

• Road traffic flow  

• Regional taxi flow  

• Regional bike flow  

• Station-level subway passenger flow  

• Road traffic speed  

• Road travel time  

• Traffic congestion  
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• Taxi demand  

• Bike demand  

• Reporting and monitoring traffic accidents 

Entities that are typically involved in a traffic management solution include the following: 

• Sensors 

o Various sensors can be deployed for detecting traffic movement and density, such as 

infrared sensors, acoustic sensors, radars, lidars etc. 

• Actuators 

o Traffic lights are the most important actuators that control traffic in a smart city. Also, 

other actuators can help control traffic, such as digital speed limit signs, variable message 

signs, roadway lights etc. 

• Cameras 

o In a smart city, cameras are mostly placed in crossroads or next to streetlights to monitor 

traffic conditions and accidents. 

•  Edge nodes 

o Edge nodes are devices deployed close to the source of the data, whether at near or far 

edge layer of the ECC, to enable local data processing which reduces the latency, saves 

bandwidth and enhances privacy. Such nodes can be placed in special cabinets near 

crossroads to support (near) real-time processing which is required for traffic 

management use cases. 

• Cloud servers 

o Servers hosted within cloud provider infrastructure are required to store large amounts 

of data and handle resource-intensive data processing and analytics or to run ML models. 

• ML models 

o ML models are needed in traffic management solutions to extract traffic patterns, predict 

traffic congestion or detect accidents. The output of these models can be used to optimize 

traffic control. 

 

3.1.1 Problem definition: Machine learning on large volumes of traffic data 
By leveraging algorithms to analyse data patterns and make predictions based on large volumes of traffic 

data, ML can help optimise traffic management strategies, reduce congestion on the roads and improve 

overall transportation efficiency. However, the sheer volume and complexity of available city-wide data 

pose unique challenges for traditional centralised ML approaches. For this reason, we explore two 

proposed strategies: federated learning and decentralised learning. Federated learning enables model 

training across distributed devices by using centralised orchestration for model aggregation, while 

decentralised learning provides a distributed approach to model training by distributing the learning 

process across multiple nodes or devices without the need for a central aggregator. 
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3.1.1.1 Proposed strategy: Federated learning for real-time traffic monitoring 

In the context of real-time traffic monitoring, FL can help to improve traffic prediction, congestion 

detection, and overall traffic management strategies in smart cities. By leveraging data from various 

sensors, cameras, connected vehicles, and other sources, FL enables the development of intelligent traffic 

monitoring systems that can adapt to dynamic traffic conditions.  

In real-time traffic monitoring, data is generated from a multitude of sources, including traffic cameras, 

road sensors, connected vehicles, and urban infrastructure. FL allows model training to occur locally on 

these distributed data sources or in a layer close in the ECC hierarchy, ensuring that sensitive data remains 

on-site and is not transmitted centrally. This approach brings the following advantages: 

• Reduced network traffic: As the data is stored close to the source that generated it, network traffic 

is significantly reduced to cloud servers, especially when large amounts of data are collected and 

processed, such as for processing high resolution video streams from road cameras. 

• Enhanced privacy: Instead of sharing raw data, only model updates and aggregated insights are 

exchanged between devices, minimizing privacy risks while still enabling collaborative learning. 

• Real-time adaptation: By continuously updating and refining models based on new data 

observations, FL facilitates dynamic adjustments to traffic management strategies, such as signal 

timing optimisation, congestion detection, and route planning. 

 

3.1.1.2 Proposed strategy: Decentralised GNN for traffic forecasting 

The traffic forecasting problem is more challenging than other time series forecasting  because it involves 

large data volumes with high dimensionality, as well as multiple dynamics including emergency situations, 

e.g., traffic accidents [18]. Time-series data is a sequence of data points indexed or ordered by time 

intervals, typically used for analysing trends, patterns, and changes over time. The traffic state in a specific 

location has both spatial dependency, which may not be affected only by nearby areas, and temporal 

dependency, which may be seasonal. Traditional linear time series models, e.g., auto-regressive and 

integrated moving average (ARIMA) models, cannot handle such spatiotemporal forecasting 

problems[18]. ML and deep learning techniques have been introduced in this area to improve forecasting 

accuracy, for example, by modelling a whole city as a grid and applying a convolutional neural network 

(CNN [18]. However, the CNN-based approach is not optimal for traffic foresting problems that have a 

graph-based form, e.g. road networks. 

In recent years, Graph Neural Networks (GNNs) have become the frontier of deep learning research, 

showing promising performance in various applications [18]. GNNs are well suited to traffic forecasting 

problems because of their ability to capture spatial dependency, which is represented using non-Euclidean 

graph structures. For example, a road network is naturally a graph, with road intersections as the nodes 

and road connections as the edges. With graphs as input, several GNN-based models have demonstrated 

superior performance to previous approaches on tasks including road traffic flow and speed forecasting 

problems [18]. 

Many research papers have focused on using a centralised solution for traffic forecasting. Only a few have 

proposed a decentralised solution using FL [19]. However, FL requires a central trusted aggregator to 

combine the contributions of different devices, and thus cannot fully eliminate the issues of scalability, 
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trust, and privacy. Furthermore, these techniques assume that each device has a sufficiently large view of 

the graph to perform a complete GNN training step, which is especially problematic for deep GNNs that 

have a large receptive field. 

We propose the usage of a decentralised GNN to solve traffic forecasting problem. Decentralised GNN is 

best used in scenarios where centralised training is not feasible or desirable, e.g. in case of large data 

volumes. Decentralised solutions allow for real-time processing of data closer to the traffic sources (e.g., 

sensors, cameras). This reduces latency and enhances the system's ability to respond rapidly to changing 

traffic conditions [19]. 

 

3.1.2 Problem definition: Maintaining QoS of inference service instances running in smart 

city environments 
From traffic management and public safety to resource allocation and environmental sustainability, 

inference services provide real-time analysis, enabling cities to respond dynamically to evolving 

conditions. In the applications of traffic management, inference services process data from sensors, 

cameras, and other sources to predict traffic patterns, optimize signal timings, and reduce congestions. In 

public safety, these services analyse surveillance footage, detect anomalies, and enhance emergency 

response capabilities without compromising individual privacy.  

In practice, each service is associated to a set of QoS requirements specifying Service Level Objectives 

(SLOs) that must be met for all clients using the service. These requirements are based on various 

parameters, including latency, throughput, and security. Maintaining these requirements above a certain 

threshold is crucial in smart cities. For example, latency can be of great importance when detecting 

anomalies such as fires or car crashes, throughput is important when a high-resolution video needs to be 

processed to detect events on cameras, and privacy requirements are important in all smart city use cases, 

especially in smart homes. 

Once models are trained and inference services are deployed across the ECC, the challenge arises on how 

to ensure continuous data delivery from IoT devices to running service instances in the dynamic edge-to-

cloud environment while adhering to specific QoS requirements and balancing the load on service 

instances. This is not a trivial task as both IoT devices and nodes running the services can change their 

states and locations, as well as the high probability of the underlying network between them [1]. 

 

3.1.2.1 Proposed strategy: QoS-aware load balancing for smart city services 

To ensure QoS for clients using inference services within the ECC, one approach is to deploy a proxy on 

each node within the cluster. Clients requiring a service only need to connect to the proxy assigned to 

them, usually the one with the shortest network distance. These proxies act as intermediaries and forward 

all client requests to the appropriate service instances based on a prediction of whether they can fulfil the 

QoS requirements. In addition, the proxies continuously monitor the QoS perceived by the clients so that 

they can dynamically adapt to changes within the ECC environment. 
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In addition, these proxies can facilitate load balancing between a pool of service instances that can fulfil 

the QoS requirements. By distributing incoming requests across multiple instances, the risk of overload is 

reduced and the reliability of inference services is improved. 

An example of the use of a QoS proxy could be a real-time collision avoidance system for autonomous 

vehicles. In these systems, cameras are installed at the roadside that send their video streams to the 

inference service instances running in the ECC to detect accidents or unpredictable events, e.g. a 

pedestrian suddenly stepping onto the road behind a parked car. The processing of these data streams 

must be completed within a short time, usually less than 50 milliseconds as stated in [30], as the 

information about the event must be sent to the nearby vehicles that might be affected by the event. 

Therefore, a service instance must be running on a node close to the camera and needs to have a place in 

the processing queue so that a request can be processed immediately. In this case, a device that collects 

video from the camera only needs to send the video to the proxy, which ensures that the streams are 

delivered to the inference service instance that can fulfil the QoS requirement for a service, namely a 

processing latency of less than 50 milliseconds. The proxy can also perform load balancing on multiple 

instances that meet the QoS requirements, ensuring that none of these instances are overloaded. 

 

3.2 Smart Agriculture 

Smart agriculture [20], often referred to as precision farming, is a transformative paradigm for agricultural 

production that integrates cutting-edge technologies such as IoT, AI and robotics to improve the 

efficiency, productivity, and sustainability of agricultural practises. At its core, smart agriculture leverages 

advanced technologies to collect and analyse real-time data from farms [21]. This data-driven approach 

enables farmers to make informed decisions, optimise resource allocation and accurately monitor crop 

health. Smart farming encompasses a range of applications, including: 

• precision irrigation, 

• crop monitoring, 

• automated machinery and  

• predictive analytics.  

By using sensors to collect data on soil moisture, temperature and nutrient levels, farmers can fine-tune 

their irrigation schedules and fertiliser applications to minimise waste and maximise yields. Drones 

equipped with cameras and sensors provide a bird's eye view of fields and help with early detection of 

diseases, pests and other problems [22]. AI algorithms process this data to gain insights that enable 

farmers to adopt more sustainable and efficient farming methods, leading to higher yields. Overall, smart 

farming promises to revolutionise traditional farming methods and promote sustainability through 

resource-efficient food production with less water, fertiliser, herbicides and insecticides. 

The integration of advanced technologies into smart agriculture poses a number of challenges that require 

innovative solutions for sustainable and efficient agricultural practises. One major challenge is the 

effective management of the extensive data generated by various sensors and devices in agriculture. The 

sheer volume of data, ranging from soil moisture to crop health indicators, makes it difficult to process, 

analyse and gain actionable insights from this data. The problem goes beyond the sheer volume of data 

since it is challenging to transmit data from remote fields where network bandwidth is limited. Low Power 
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Wide Area Network (LPWAN) protocols such as LoRaWAN and NB-IoT are typically applied for precision 

agriculture applications.  

In precision agriculture, the focus is on real-time data collection which is spatially dense, where 

connectivity and network reliability becomes important, although not as critical as in smart city use cases. 

In remote agricultural areas, limited network infrastructure can affect the seamless flow of data between 

devices, influencing the timeliness and accuracy of decision-making processes. It is worth noting that while 

not as crucial as in urban settings, connectivity and network reliability continue to play an important role 

in optimising precision agriculture. 

Smart agriculture relies on accurate data to make decisions. Inaccuracies or interruptions in data 

collection due to unforeseen events can impact the effectiveness of decision-making in agriculture, 

especially considering that thresholds for taking measures are sometimes below 1 °C (frost protection, 

evapotranspiration-based irrigation), as noted in [31]. 

 

3.2.1 Problem definition: Data transmission optimisation and energy efficiency in 

agricultural IoT systems 
The efficient transmission of data in agricultural IoT systems is a major problem where bandwidth 

limitations and power consumption are the most important resources. Various solutions have been 

explored to reduce the amount of transmitted data from the sensors and machines placed in the fields to 

the processing services, e.g., compression strategies and the use of ML models to predict measurements.  

As part of our research objectives, we aim to improve data transmission processes to increase efficiency 

while maintaining the accuracy and integrity of the transmitted data. The biggest challenge lies in 

managing the large amounts of data generated by various sensors and devices in smart agriculture, 

potentially overwhelming IoT networks. Traditional real-time transmission of large datasets can lead to 

latency, increased operational costs and network congestion. To overcome these challenges, we are 

exploring technologies such as edge computing and AI. 

At the same time, energy consumption and efficiency of IoT devices are of the greatest importance. These 

devices, which include sensors, actuators, smart devices and more, form the backbone of connected 

systems and enable data collection, processing, and automation. Understanding and optimising the 

energy consumption of IoT is very important for various reasons. Energy consumption has a direct impact 

on the operating costs and longevity of the devices. Optimising energy consumption ensures longer 

device life and reduces the frequency of replacement and maintenance cycles. It also contributes to cost 

savings by minimising power requirements, especially in scenarios where devices are operated in remote 

or off-grid locations and rely on batteries or alternative power sources. 

Moreover, energy efficient IoT devices play a critical role in ensuring the reliability and scalability of 

connected systems. In large-scale deployments where numerous devices communicate and interact with 

each other, optimising energy consumption is critical to maintaining seamless operations and ensuring 

consistent performance. By employing energy-efficient components, protocols, and power-saving 

strategies, these devices can minimize power consumption without compromising their functionality. 
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3.2.1.1 Proposed strategy: Machine learning at the edge for data filtering 

Our proposed approach utilizes ML models deployed on edge devices to perform predictive data filtering 

in smart agriculture. This is expected to enhance data transmission efficiency by reducing the transmission 

load on the network, while simultaneously ensuring the accuracy of the transmitted data. Our 

investigation also targets power consumption of IoT devices, aiming to optimize energy patterns using 

WebAssembly (Wasm). Wasm's format supports energy-efficient IoT operation, reducing memory and 

processing power requirements. The decision to focus on smart agriculture is rooted in the sector's 

growing dependence on data-intensive technologies. Typical devices applied for precision agriculture are 

resource-constrained, with limited bandwidth and energy source, which creates specific challenges for 

data transmission and application of ML models in IoT solutions for agriculture. These include the use of 

remote sensors, resource constraints and the need to make real-time decisions to optimise crop yields. 

The proposed approach illustrated in Figure 2 involves deploying ML algorithms on IoT or edge devices to 

predict and filter redundant data and transmit only relevant information to central processing units 

located in the cloud. Specifically, the predicted values are calculated both locally and in the cloud. 

Furthermore, new data readings are transferred to the cloud if a significant deviation between the newly 

captured data and the predicted value is detected. This approach enables the exclusive transmission of 

poorly predicted values and thus increases the efficiency of data transmission, especially in the context of 

precision agriculture. In addition, a balance is achieved between minimising the data transmission load 

and ensuring the accuracy and reliability of the transmitted data. 

Our second goal in this use case is to measure the power consumption of IoT devices and accurately 

identify the most important power consumers. Through monitoring and analysis, we aim to create a 

detailed profile of the power consumption patterns of these devices, allowing a better understanding of 

the power-hungry components and their respective contribution to the overall energy consumption. 

 

Figure 2. Data filtering on edge devices for precision agriculture 
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3.3 Available datasets 

3.3.1 Traffic management 
There are a lot of open data sources for traffic management problems. Data types are categorized in 10 

major types [18] 

• Transportation network - represents the underlying transportation infrastructure, e.g., road, 

subway, and bus networks, usually obtained from government transportation departments or 

extracted from online map services. 

• Traffic sensor data - traffic sensors, e.g. loop detectors, are installed on roads to collect traffic 

information, e.g., traffic volume or speed. 

• GPS trajectory data - the trajectory data calculated from GPS coordinate samples can be matched 

to road networks and further used to derive traffic flow or speed. 

• Location-based service data - GPS function is also embedded in smartphones, which can be used 

to collect various types of location-related data, e.g., check-in data, point-of-interest data, and 

route navigation application data. 

• Trip record data - departure and arrival dates/times, departure and arrival locations, and other 

trip information. 

• Traffic report data - often used for abnormal cases, e.g., anomaly report data and traffic accident 

report data. Traffic report data are less used in graph-based modelling because of their sparsity 

in both spatial and temporal dimensions. 

• Multimedia data - used as an additional input to deep learning models or for verifying the traffic 

status indicated by other data sources. 

• Simulated traffic data - traffic simulators, such as MATES (The Macro Agent Transport Event-Based 

Simulator), are used to build virtual training and testing datasets for deep learning models. 

• Weather data - Traffic states are highly affected by the meteorological factors including 

temperature, humidity, precipitation, barometer pressure, and wind strength. 

• Calendar data - includes the information on weekends and holidays. 

For traffic sensor data type, there are several relevant open datasets available for research use: 

• METR-LA - contains traffic speed and volume collected from the highway of the Los Angeles 

County Road network, with 207 loop detectors. The samples are aggregated in 5-minute intervals. 

The most frequently referenced time period for this dataset is from March 1st to June 30th, 2012. 

• Performance Measurement System (PeMS) data – contains raw detector data from over 18,000 

vehicle detector stations on the freeway system spanning all major metropolitan areas of 

California from 2001 to 2019, collected with various sensors including inductive loops, side-fire 

radar, and magnetometers. The samples are captured every 30 seconds and aggregated in 5-

minute intervals. Each data sample contains a timestamp, station ID, district, freeway ID, direction 

of travel, total flow, and average speed. Different subsets of PeMS data exist, such as: 

o PeMS-BAY - contains data from 325 sensors in the Bay Area from January 1st to June 30th, 

2017. 
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o PeMSD3 - uses 358 sensors in the North Central Area. The frequently referenced time 

period for this dataset is September 1st to November 30th, 2018. 

o PeMSD4 - uses 307 sensors in the San Francisco Bay Area. The frequently referenced time 

period for this dataset is January 1st to February 28th, 2018. 

o PeMSD7 - uses 883 sensors in the Los Angeles Area. The frequently referenced time 

period for this dataset is May to June 2012. 

o PeMSD8 - uses 170 sensors in the San Bernardino Area. The frequently referenced time 

period for this dataset is July to August 2016. 

• Seattle loop – it was collected by inductive loop detectors deployed on four connected freeways 

(I-5, I-405, I-90, and SR-520) in the Seattle area, from January 1st to 31st, 2015. It contains the 

traffic speed data from 323 detectors. The samples are aggregated in 5-minute intervals. 

 

For handling image datasets related to traffic, we can utilize the Vision Knowledge Graph (VisionKG) 

system developed by TUB [32]. VisionKG is designed to streamline computer vision tasks specifically 

related to traffic scenarios, such as autonomous driving and pedestrian detection. These tasks rely heavily 

on diverse and well-annotated datasets to effectively train deep learning models. VisionKG fulfils this need 

by providing a unified framework that integrates and links various prominent datasets tailored to these 

applications. These datasets, such as BDD100K, KITTI, MS-COCO, Open Image Dataset and VOC, provide a 

comprehensive collection of labelled images covering various traffic scenes, objects and signage. VisionKG 

enables researchers to investigate the relationships and potential biases between these datasets. It gives 

them easy access to relevant subsets of data for specific tasks such as analysing traffic flow or recognising 

signs. In this way, VisionKG reduces the time and effort required for data acquisition and encourages the 

reuse of data by researchers and practitioners in the field. 

There is a limited number of datasets that are explicitly designed for federated learning on smart city data. 

However, any open dataset can be adapted to federated learning scenario by splitting it into smaller 

datasets based on the data source as long as it has sufficient number of samples per client so that the 

training can produce a good model. For example, OpenAQ provides open access to air quality data from 

various locations around the world. It can be used to extract data from different sources and train the air 

quality models with FL based on data locality. 

 

3.3.2 Smart agriculture 

3.3.2.1 Precision Agriculture Monitoring: Crop and field data 

Field monitoring for precision agriculture occurs through three primary categories: 

1. Open datasets: Open datasets such as ERA5-Land and Agri4Cast provide valuable resources for 

researchers in agriculture and environmental sciences. These datasets are characterised by large 

spatial coverage and relatively low cost, making them accessible for various applications. 

However, it is important to note that they come with trade-offs, including lower measurement 

accuracy and lower temporal resolution. 

2. Proximal Monitoring: To overcome the limitations of open datasets, the adoption of proximal 

monitoring techniques has increased significantly, particularly through the use of unmanned 

https://openaq.org/
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aerial vehicles (drones). Drones provide a more detailed and accurate measurement of 

environmental variables offering controlled temporal resolution. This capability makes them well 

suited to tasks that require detailed and timely information, such as crop monitoring and precision 

agriculture. 

3. Close-Range Monitoring: Moving even closer to the ground, close-range monitoring involves the 

deployment of agrometeorological stations and interconnected IoT devices in the field. These 

stations, equipped with sensor nodes, provide continuous and detailed measurements of key 

environmental parameters, including soil and air conditions. This approach offers high 

measurement accuracy but is associated with higher costs and is limited by its coverage area. 

The choice of monitoring method used depends on the specific requirements of the application in 

precision agriculture. Open datasets offer a broad perspective with cost efficiency, while proximal 

monitoring with drones provides more detailed and accurate information. Close-range monitoring with 

agrometeorological stations and IoT devices offers the highest precision, but at a greater expense and 

within a limited spatial area. The combination of these approaches enables a comprehensive and 

adaptable strategy for monitoring and managing agricultural and environmental conditions. 

 

3.3.2.2 Proposed dataset 

Over a three-year period, time series data was collected from several stations across Croatia. This resulted 

in two primary datasets created by the UNIZG-FER team during the projects Pinova [31] and IoT-Field1 

that provide unique insights into agricultural conditions and plant health. 

The first dataset focuses on agrometeorological parameters and captures key environmental factors such 

as temperature, humidity, air pressure, soil temperature and leaf wetness. The second data set contains 

readings from multispectral sensors, a sophisticated technology that measures different wavelengths of 

light reflected by plants. These readings are then used to calculate important vegetation indices that 

provide information about plant health and development. The inclusion of multispectral data in the 

project enhances the ability to assess and monitor vegetation dynamics. 

The integration of specialized analytical services increases the utility of the datasets. For example, 

Growing Degree Days (GDD) calculations contribute to the understanding of the cumulative heat units 

available for plant growth, aiding crop management decisions. Normalised Difference Vegetation Index 

(NDVI) analysis provides a quantitative measure of vegetation condition and provides information on 

plant vitality and stress levels. In addition, yield estimation services improve forecasting capabilities and 

enable informed decisions on crop productivity. 

By combining agrometeorological parameters, multispectral sensor measurements and advanced 

analytical services, the two datasets provide a solid foundation for smart agricultural practises. 

There are two distinct types of stations, each of which collects different parameters. The first type, the 

called "PIO stations", gathers a wider range of parameters. In addition to the typical agrometeorological 

measurements such as temperature, humidity and etc., these stations also capture light intensity at 

 
 

1 https://iot-polje.fer.hr/iot-polje/en  

https://iot-polje.fer.hr/iot-polje/en
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different frequencies. This measurement is particularly valuable in smart agriculture for calculating the 

NDVI (Normalised Difference Vegetation Index). The PIO stations are stationed in Slavonia. 

The other type of stations, called "FER stations", consists of two stations in Zagreb, at the Faculty of 

Electrical Engineering and Computing. These stations collect the measurements listed below in Table 1. 

Table 1. List of collected parameters 

From PIO stations: From FER stations: 

RSSI Wind Speed 

SNR Battery Level 

Air Pressure Humidity 

Air Temperature Leaf Wetness 

Atmospheric Pressure Solar Radiation 

Battery Level Rainfall 

Battery Voltage, Air Pressure 

Compas Heading Soil Temperature 

Wind speed, Air Temperature 

Illumination Soil Moisture 

Irradiation  

Light Intensity on different frequencies  

Lightning avg. distance  

Lightning Strike Count  

Precipitation  

Rainfall  

Relative Humidity  

Solar Radiation  

Wind Direction  
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4 System Requirements 

4.1 Methodology 

The specification of the data-driven orchestration middleware requirements followed a process whose 

purpose was to derive the key requirements from research problems and specific use cases. In this 

process, special attention was paid to finding use cases that incorporate different research problems, 

which will support additional use cases not currently considered within the project.  

The iterative process included the following steps:  

Step 1: Define requirements for a general architecture.  

We are defining initial requirements for the middleware taking into account what is needed for different 

use case, and it is generic. Such requirements bear the potential of leading to a more efficient architectural 

design that identifies key functional components across the considered use cases promoting a modular 

design.  

This step is carried out asynchronously with the help of the MS Teams collaboration tool.  

Step 2: Introduce use case specific requirements. 

The introduction of use case specific requirements starts with analysing research problems and their 

application to specific use case. Everything that is missing in general requirements is put into a use case 

specific requirement.  

Upon the completion of this stage all partners inspect the derived requirements providing additional input 

in the form of: 

- Additional requirements that are missing from the previous step. 

- Assessment on whether a requirement derived by one use case also pertains to other. This also 

includes comments on the generality of the introduced requirements. 

- Any other comment, including comments regarding the precise specification of the intended 

meaning.  

- This step is carried out asynchronously with the help of the MS Teams collaboration tool. At this 

stage, the Task Leader of T1.4 consolidates all comments and identifies grey areas to be discussed.  

Step 3: Finalize requirements. 

This last iteration step aims at finalising all requirements ensuring the description is precise, the associated 

set of use cases has been correctly identified and the importance level within the overall project efforts 

has been correctly and realistically specified. If some requirements of specific use case are also important 

for other use cases, then they should be declared as requirements for the general architecture. 

 

4.2 Specified requirements 

Table 2 lists the set of requirements specified for the orchestration middleware, each appropriately 

annotated with its attribute values. 

We are using the following acronyms: 
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- For Type:  

o F – functional,  

▪ Categories: Interface, Monitoring, Management, … 

o NF – non-functional 

▪ Categories: Performance, Security, Privacy, … 

- For Importance: M – must, S – should 

 

Table 2: Middleware requirements 

No. Type Category Importance Description Use 
cases 

1 F Management M Middleware should efficiently manage and 
monitor resources on each node. 

1 and 
2 

2 F Management M Middleware should collect the distribution of 
data available on node for ML. 

1 

3 F Management M Middleware should collect the information on 
the underlying network connecting nodes in 
the ECC. 

1 and 
2 

4 F Management M Middleware should deploy and manage 
services across the ECC. 

1 and 
2 

5 F Management M Middleware should be able to run a 
configuration model to output configuration of 
a ML pipeline. 

1 

6 F Management M Middleware should deploy ML components 
based on a learning configuration. 

1 and 
2 

7 F Monitoring M Middleware should monitor learning 
performance. 

1 

8 NF Performance M Middleware should reconfigure the learning 
pipeline if a better learning performance can 
be achieved. 

1 

9 F Management M Middleware should deploy and manage 
inference components. 

1 and 
2 

10 F Monitoring M Middleware should monitor inference 
accuracy. 

1 and 
2 

11 F Monitoring M Middleware should monitor inference service 
performance. 

1 and 
2 

12 NF Performance M Middleware should maintain inference 
performance and dynamically adapt to 
changes in the system. 

1 and 
2 
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13 NF Performance M Middleware should maintain a desired QoS for 
clients using the inference services. 

1 
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5 Architecture 

We first define a general architecture for orchestration of ML pipelines which includes generic 

components needed for both training and inference. The general architecture is further refined and 

accustomed to the requirements of specific use cases. Not all components from the general architecture 

are needed in specific use cases. 

The template for component description is given in Table 3, in compliance with the template 

recommended in IEEE STANDARD 1016: Software Design Specification [23]. In this document we focus on 

component descriptions, list of features and related requirements, while detailed component design will 

be provided in the second and final version of this deliverable. 

Table 3. Template for component description 

Component Name of the component 

Description Short description of the component 

Provided functionalities List of functionalities provided by this component 

Relation to other components How will this component interact with other 
components? 

Related use cases Use cases in which this component is applied 

Related requirements List of requirements that are addressed by this 
component (Table 2) 

 

 

5.1 General architecture for orchestration of ML pipelines 

WP1 will develop an original data-driven orchestration middleware for ECC to support ML workflows with 

appropriate data provided by IoT devices, which in turn will be optimised for energy efficiency. The 

middleware will include mechanisms for service orchestration needed to schedule, deploy and manage 

management of services in a distributed ECC. Special focus is paid to data routing as one of the offloading 

criteria, which considers data streams and the need to disseminate them to adequate containers. When 

orchestrating services in a cloud environment, latency and load balancing are at the centre of most related 

work, which leaves a lot of room for the development and testing of mechanisms focused on data routing.  

The middleware should facilitate energy-efficient operation of low-power end-devices in the IoT-

environment. Different mechanisms will be explored which try to find a balance between energy, cost, 

and performance. Two main strategies can be employed to achieve this goal: adapting monitoring 

intensity based on energy constraints and desired accuracy levels, and trading latency for energy savings. 

Additionally, different models for achieving energy efficiency will be analysed (e.g., transmission power 

modelling, energy harvesting models, etc.).  

Mechanisms for distributed and federated learning in the ECC. Since different tasks of the ML pipeline in 

a distributed learning environment can be executed on different nodes, this needs to be considered when 
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running the orchestration mechanisms developed in T1.1. In this task, federated learning principles and 

existing mechanisms (e.g., deep neural networks) will be analysed within WP2 activities, and specific ML 

workflows will be defined for the use cases specified in T1.4. The defined workflows will be integrated 

into the orchestration mechanisms designed in T1.1. 

 

 

 

Figure 3. General architecture diagram. 

 

The general architecture of the AIoTwin data-driven orchestration middleware, shown in Figure 3, consists 

of two main entities: orchestrator and node. Typically, a single orchestrator is used in a centralised setup 

to orchestrate many nodes offering resources for the deployment and execution of ML pipeline services. 

To orchestrate the ML pipeline, the middleware needs to support remote node management and 

deployment of services across the ECC (requirements 1 and 4). Such essential functionality is integrated 

within general-purpose orchestrators, such as Kubernetes, which were explained in more detail in Section 

2.1. Therefore, this architecture proposes the orchestrator to be designed as an extension of a general-
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purpose orchestrator with the components dedicated to managing ML-specific tasks relevant to both 

learning and inference.  

 

5.1.1 Orchestrator 
Orchestrator is the central entity of the proposed architecture and, due to its high-availability 

requirement, it is deployed in the cloud.  

The components belonging to the general-purpose orchestrator, coloured in yellow in Figure 3, are the 

following: Node Controller, Service Controller and Service Registry. These components enable remote 

management of nodes and service across ECC. ML-related components, coloured in green in Figure 3, are 

the following: Learning Controller and Learning Configuration. These components make sure that a 

learning pipeline is deployed in the ECC environment and that it adapts dynamically to the changes in the 

ECC environment. Finally, the only inference-related component, Inference Controller coloured in red in 

Figure 3, manages the inference pipeline and also enables its adaptation to the events in the ECC. Both 

learning- and inference-related components implement their functionalities in collaboration with the 

components of the general-purpose orchestrator which provide ECC-related information (up-to-date 

node and network state) and deploy services of the pipeline in the ECC environment. 

 

Table 4. Node Controller component description 

Component Node Controller (NC) 

Description Node Controller manages and monitors nodes of 
the system and collects information about node 
resources. 

Provided functionalities • Node management 

• Collecting node resource consumption 

• Collecting network information 

Relation to other components Inbound: 

• Virtualization Agent 
o Sends node state and resource 

information to NC 

• Network Agent 
o sends network information to NC 

• Service Controller 
o Obtains node information from 

NC 

• Learning Controller 
o Obtains node and network 

information from NC 

• Inference Controller 
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o Obtains node and network 
information from NC 

Outbound: 

• Node 
o NC sends message to start the 

Virtualization Agent 

Related use cases 1, 2 

Related requirements 1, 2, 3 

 

Table 5. Service Controller component description 

Component Service Controller (SC) 

Description Service Controller deploys and manages services 
running on the nodes 

Provided functionalities • Service deployment and management 

• Service monitoring 

Relation to other components Inbound: 

• Learning Controller 
o Sends requests to SC to deploy 

learning components 

• Inference Controller 
o sends requests to SC to deploy  

Outbound: 

• Virtualization Agent 
o SC sends requests to deploy 

services 

• Service Registry 
o SC obtains service artifacts (more 

detailed description in Table 6) 

Related use cases 1, 2 

Related requirements 4 

 

Table 6. Service Registry component description 

Component Service Registry (SR) 

Description Service Registry stores the service artifacts that 
will be deployed on nodes. Service artifacts are 
components and resources necessary to package, 
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deploy, and run a service within a virtualization 
environment. The artifacts can contain service 
code, dependencies, runtime libraries etc. 

Provided functionalities • Storing service artifacts 

Relation to other components Inbound: 

• Service Controller: 
o Obtains service artifacts from SR 

Related use cases 1, 2 

Related requirements 4 

 

 

Table 7. Learning Controller component description 

Component Learning Controller (LC) 

Description Learning Controller deploys components of the 
learning pipeline, monitors learning and 
reconfigures the pipeline if needed. 

Provided functionalities • Collecting node resource information and 
the underlying network characteristics 
through Node Controller. 

• Collecting the distribution of data on 
nodes (in number of samples and class 
distribution) that can be used for model 
training from the Learning Agent running 
on the node. 

• Obtaining the initial model to be trained 
from the user. 

• Running the configuration model to 
obtain configuration of the learning 
pipeline.  

• Deploying learning entities through 
Service Controller based on the obtained 
configuration. 

• System monitoring through Node and 
Service Controller and rerunning the 
configuration model upon system changes 
and, if necessary, deploying new learning 
components. 

• Learning performance monitoring 
obtained by Learning Agent and rerunning 
the configuration model upon changes in 
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performance and, if necessary, deploying 
new learning components. 

Relation to other components Inbound: 

• Learning Agent 
o sends learning information to LC 

Outbound: 

• Service Controller 
o LC sends requests to deploy 

learning components 

• Node Controller 
o LC obtains node and network 

information 

•  

Related use cases 1, 2 

Related requirements 6, 7, 8 

 

Table 8. Learning Configuration component description 

Component Learning Configuration (LCF) 

Description Learning Configuration component takes inputs 
(node resources, data distribution, initial model) 
and outputs the configuration of the learning 
pipeline, which can contain: roles assigned to 
nodes (client, local aggregator, global aggregator), 
local epochs, total number of rounds etc. The 
architecture is designed in a way that any 
configuration model can be used depending on 
the main goal to achieve, such as minimizing 
training time, resource utilization, communication 
cost or maximizing performance. 

Provided functionalities • Running the learning configuration model 
to output configuration of the learning 
pipeline 

Relation to other components Inbound: 

• Learning Controller 
o Obtains configuration of the 

learning pipeline from LCF 

•  

Related use cases 1 
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Related requirements 5, 8 

 

Table 9. Inference Controller component description 

Component Inference Controller (IC) 

Description Learning Configuration component takes inputs 
(node resources, data distribution, initial model) 
and outputs the configuration of the learning 
pipeline, which can contain: roles assigned to 
nodes (client, local aggregator, global aggregator), 
local epochs, total number of rounds etc. The 
architecture is designed in a way that any 
configuration model can be used depending on 
the main goal to achieve, such as minimizing 
training time, resource utilization, communication 
cost or maximizing performance. 

Provided functionalities • Collecting node resource information and 
the underlying network characteristics 
through Node Controller. 

• Collecting the distribution of clients that 
will use the inference service. 

• Selecting nodes to host inference service 
based on their resources and the clients 
that will use the inference service. 

• Deploying inference service instances 
through Service Controller. 

• System monitoring through Node and 
Service Controller and deploying new 
instances if needed. 

Relation to other components Inbound: 

• Inference Agent 
o Sends learning information to the 

IC 

Outbound: 

• Service Controller 
o IC sends requests to deploy 

inference components 

• Node Controller 
o IC obtains node and network 

information 

Related use cases 1, 2 
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Related requirements 9, 10, 11, 12 

 

Various system events can trigger a change in the learning pipeline, such as node failures or overload, 

service failures, or changes in the underlying network like increased latency and limited bandwidth. Also, 

changes in the learning performance (stragglers, slow accuracy convergence or increasing loss) can result 

in a new configuration of the learning pipeline. 

 

5.1.2 Node 
Node can be any connected device that has enough resources to run various services, including ML 

pipeline services, through a selected virtualization engine, such as Docker containers or WebAssembly 

runtimes (WASM). Node components related to the general-purpose orchestrator, which are coloured in 

yellow in Figure 3, are the following: Virtualization Agent, Network Agent and Network Proxy. 

Virtualization Agent is in charge of deploying services and reporting service and node states, while 

Network Agent and Network Proxy are components that collect underlying network information and 

perform request routing within the ECC. Learning Service and Learning Agent, coloured in green in Figure 

3, are node components related to the learning pipeline where the service is actually implementing the 

learning task and agent is in charge of monitoring and reporting learning performance to the Learning 

Controller of the orchestrator. Similarly, Inference Service and Inference Agent, coloured in red in Figure 

3, are components related to inference where Inference Service implements the actual inference task, 

while Inference Agent monitors and reports inference performance to the Inference Controller. 

 

Table 10. Virtualization Agent component description 

Component Virtualization Agent (VA) 

Description Virtualization agent is run on each node and acts 
as an intermediate between the orchestrator and 
the virtualization engine to deploy learning of 
inference services. An example of a virtualization 
agent is “kubelet” process of Kubernetes. It also 
informs the node controller on the node’s 
resource state. 

Provided functionalities • Running services through virtualization 
engine 

• Sending resource state reports 

• Sending service state reports 

Relation to other components Inbound: 

• Service Controller 
o Sends requests to VA to deploy 

services 
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Outbound: 

• Node Controller 
o VA sends resource state reports 

• Service Controller 
o VA sends service state reports 

Related use cases 1, 2 

Related requirements 1, 4 

 

Table 11. Network Agent component description 

Component Network Agent (NA) 

Description Network Agent is deployed on each node to scan 
the underlying network which includes obtaining 
network uplink and downlink characteristics and 
collecting link characteristics on the path to its 
neighbours. This information is sent to the Node 
Controller which uses it to create a spanning tree 
of all nodes and network conditions between 
them. 

Provided functionalities • Collecting network characteristics on the 
path to its neighbours 

• Sending network information reports 

Relation to other components Outbound: 

• Node Controller 
o NA sends network reports 

• Network Agent 
o NA obtains network 

characteristics with connection to 
NA’s 

Related use cases 1 

Related requirements 3 

 

Table 12. Network Proxy component description 

Component Network Proxy (NP) 

Description Network Proxy is deployed on each node and it 
forwards the requests to the inference services 
based on the specified QoS requirements while 
performing load balancing. 
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Provided functionalities • Forwarding requests to service instances 
that meet the QoS 

• Load balancing 

Relation to other components Outbound: 

• Node Controller 
o NP obtains node and network 

information 

• Service Controller 
o NP obtains available service 

instances 

• Inference Service 
o NP forwards requests to inference 

service instances 

Related use cases 1 

Related requirements 13 

 

 

Table 13. Learning Service component description 

Component Learning Service (LS) 

Description Learning Service can be any service in the learning 
pipeline, such as a learning client or a learning 
model aggregator. 

Provided functionalities • ML 

• Model aggregation (OPTIONAL) 

Relation to other components Inbound: 

• Learning Agent 
o Obtains learning performance 

from LS 

Related use cases 1, 2 

Related requirements 6, 8 

 

Table 14. Learning Agent component description 

Component Learning Agent (LA) 

Description The responsibilities of the Learning agent may 
involve tasks such as overseeing the performance 
of learning processes and informing the Learning 
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Controller with information on performance 
metrics, including but not limited to loss, accuracy, 
time per round/epoch, etc. 

Provided functionalities • Monitoring learning performance 

• Sending learning performance reports 

Relation to other components Outbound: 

• Learning Controller 
o LA sends learning performance 

reports 

• Learning Service 
o LA obtains learning performance 

Related use cases 1 

Related requirements 7 

 

Table 15. Inference Service component description 

Component Inference Service (IS) 

Description Inference Service is deployed to make predictions 
based on the pretrained model. Therefore, it is 
most commonly deployed on the same node that 
performs learning as it already contains the 
model, and it can keep the model up to date with 
the latest version if it is retrained. Inference 
Service is used by the clients that can come either 
from inside of the cluster, i.e. other services 
deployed in the pipeline, or outside of the cluster, 
i.e. IoT devices that produce the data. 

Provided functionalities • Running predictions (inference) 

Relation to other components Inbound: 

• Inference Agent 
o Obtains inference performance 

from IS 

Related use cases 1, 2 

Related requirements 9, 12 

 

Table 16. Inference Agent component description 

Component Inference Agent (IA) 
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Description Inference Agent monitors the inference 
performance and sends the information to the 
Inference Controller, such as time per prediction, 
throughput or prediction accuracy. 

Provided functionalities • Monitoring inference performance 

• Sending inference performance reports 

Relation to other components Outbound: 

• Inference Controller 
o IA sends inference performance 

reports 

• Inference Service 
o IA obtains inference performance 

Related use cases 1, 2 

Related requirements 10 

 

5.2 Adaptive orchestration of FL pipelines 

As described in Section 2.2.1 and highlighted in [24], FL has a number of open challenges. One word that 

might summarize the various challenges in FL is heterogeneity. FL Clients participating in training may 

have different (i) hardware specifications, (ii) network characteristics, or (iii) data distributions. Hardware 

heterogeneity means that training the same model on different hardware will deliver different 

performances, leading to the occurrence of stragglers. One approach to dealing with stragglers is to 

offload computations to edge servers [25], but under the important condition that privacy requirements 

allow data to be offloaded to a nearby server. A highly distributed FL architecture means that participating 

clients will have different network characteristics. Especially in IoT use cases, devices often operate on 

unstable and bandwidth-limited networks. Therefore, with model sizes of several gigabytes, it is obvious 

that training performance is highly dependent on communication costs. To address this problem, 

hierarchical FL has been proposed [26]. It places multiple local aggregators at the edge of the network, 

closer to the FL clients, to perform local aggregation before sending the aggregated models to the global 

aggregator. With frequent local aggregations, the authors claim that their hierarchical FL approach 

reduces the overall training time as well as communication and energy costs compared to a traditional 

cloud-based FL setup. However, the authors did not focus on dealing with stragglers, which was 

highlighted by [27] where asynchronous global aggregation was proposed. Another important feature to 

consider when configuring an FL pipeline is data distribution. Data is generated by different clients with 

different quantities and frequencies and is therefore unbalanced and non-Independent and Identically 

Distributed (non-IID). Although the authors [10] claim that their proposed algorithm FedAvg (Federated 

Averaging) is robust to non-IID data distribution, several research papers have confirmed that FL will 

almost inevitably suffer performance degradation due to non-IID data [28]. Therefore, it is important to 

consider the data distribution on the nodes when selecting nodes to participate in training and, in 

hierarchical federated learning, to properly balance the clusters, as explored in [29]. 
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The overview of FL challenges brought us to the following conclusions: 

• Defining a configuration of a FL pipeline is not a trivial task. It is highly dependent on the model 

to be trained, the underlying infrastructure, and the data distribution.  

• The heterogeneity of the FL environment suggests that changes will occur during the execution 

of FL. Therefore, the configuration of the FL pipeline will most likely need to be changed during 

runtime. 

An adaptive orchestration mechanism is needed to deploy the entities of the FL pipeline, monitor the 

execution of the pipeline, and perform reconfiguration as needed. Therefore, in this chapter, we propose 

an architecture for adaptive orchestration of FL pipelines. Adaptive orchestration is achieved both by 

predicting future states of the pipeline and by responding to unexpected events. 

 

Figure 4. Adaptive orchestration of FL pipelines 
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The architecture for adaptive orchestration of FL pipelines, shown in Figure 4, is an extension of the 

general architecture that contains all the general components except the inference-related ones. The 

specifics of FL are integrated into the FL Controller, which, after collecting all the information about the 

nodes, data distribution and underlying network, executes the FL Configuration and deploys the FL 

components based on its results. FL Server is deployed on each node that serves as FL aggregator, be it at 

local or global level, and it is deployed together with its FL Agent that notifies the FL Orchestrator about 

the FL performance within its cluster, i.e. loss and accuracy in the test set. FL Client runs the client that 

performs the training and sends model updates to the server. It is also deployed with its FL Agent, which 

notifies the FL Controller about the training performance, such as training loss and accuracy, as well as 

the system information collected during the training and the time per training epoch. The remaining 

components of the general architecture keep the same functionalities as defined in Section 5.1. 

 

5.3 QoS-aware load balancing for inference services in ECC 

As described in Section 3.1.2, different service running in the ECC can have different QoS requirements 

and a problem arises on how to continuously ensure an adequate level of QoS to the clients using the 

service. Therefore, in this section, to fulfil the requirement #13 from Table 2, we propose QEdgeProxy, a 

distributed QoS-aware load balancer tailored to the ECC. Its primary functions include (i) dynamically 

maintaining a set of service instances that meet the targeted QoS for a given service, and (ii) forwarding 

service requests to these instances while performing load balancing. QEdgeProxy serves as a ``QoS agent'' 

for IoT clients within the ECC, and acts as an external routing component, i.e., an intermediary between 

IoT clients and IoT services across the computing continuum. QEdgeProxy differs from other edge-aware 

proxies in that it focuses primarily on adaptively meeting QoS requirements for its clients, rather than 

solely striving for the best possible QoS. This approach enables the integration of load balancing 

techniques with request forwarding to mitigate the risk of overloading the processing nodes while 

adhering to QoS constraints. As QoS largely depends on the processing node where the instance is 

deployed, and considering that different services can have different QoS requirements, this approach 

broadens the range of nodes that can be selected for processing a request, potentially leading to 

enhanced load balancing efficiency. 



D1.1 Report on Use Cases, Requirements, and Architecture

    
 

 
Version 1.0       © Copyright 2023, Members of the AIoTwin Consortium 41 
 

 

Figure 5 Architecture for QoS-aware load balancing for inference services in ECC 

 

Figure 5 depicts the architecture for QoS-aware load balancing for inference services in ECC as an 

extension of the general architecture proposed in Section 5.1. The architecture keeps the components 

related to the general-purpose orchestrator and the inference-related ones. The Inference Controller 

schedules and deploys inference service instances within the ECC based on the distribution of clients that 

utilize them, and makes sure that there are sufficient instances to support the demand of the clients. 

When a client, whether it is an IoT device or another application, wants to start using an inference service, 
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it connects to the closest QEdgeProxy by network distance. Then it sends its inference request to it, and 

QEdgeProxy forwards the requests directly to adequate inference service instances.  

 

5.4 Inference for efficient communication and energy-aware edge computing 

In this section, we introduce a refined architecture designed to minimize communication overhead and 

enhance energy efficiency of sensor nodes deployed on resource-constrained devices, while the sensed 

data needs to be transmitted to the cloud, as defined in Section 3.2.1.1. The proposed architecture 

consists of two layers, as shown inFigure 6: the Edge Layer, where the devices are deployed, and the Cloud 

Layer, which hosts the orchestrator and a central node. 

 

 

Figure 6.  Architecture diagram for efficient communication and energy-aware edge computing 

 

The tasks of the Node Controller, the Service Controller, the Service Registry, the Learning Controller and 

Virtualization Agent have been previously described in a preceding section and remain consistent within 

this architecture. 

The Training Service, which is responsible for model training, is deployed in the cloud together with its 

dedicated Training Agent. This agent monitors the learning performance and forwards performance 

parameters (loss, accuracy, time per round/epoch) to the Learning Controller. 
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Clients, such as IoT devices producing data, utilize the Inference Service to make predictions from the 

pretrained model. Each Inference Service comprises an Inference Agent responsible for monitoring 

performance and communicating information, particularly prediction accuracy, to the Inference 

Controller. The agent also oversees prediction validation, and if the specified accuracy is not achieved, it 

notifies the Inference Controller in the Orchestrator. Following this, the Controller notifies the Adaptive 

Learning Service in response to reported inaccuracies. Upon receiving sufficient data, the Adaptive 

Learning Service then begins the retraining process. 

  

Table 17. Management Service component description 

Component Management Service 

Description The Management Service is tasked with data 
collection, efficiently gathering information from 
the device. The service manages data 
transmission, ensuring communication during 
instances of inaccuracies by sending measured 
values to the central unit. Additionally, it 
undertakes the role of energy monitoring, keeping 
a close watch on energy consumption patterns. 

Provided functionalities • Collects  data from the device 

• Manages data transmission during 
inaccuracies by sending measured values 
to the central unit. 

• Monitors energy consumption. 

Relation to other components • Notifies the Cloud-based Adaptive 

Learning Service of inaccuracies if the 

predefined threshold value is not reached. 

Related use cases 2 

Related requirements 10 

 

Table 18. Adaptive Learning Service component description 

Component Adaptive Learning Service 

Description Adaptive Learning Service is deployed in the cloud 
to initiate retraining of a model. It starts training 
process when a sufficient number of 
measurements is collected. 
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Provided functionalities • Initiates model retraining when a 
sufficient number of measurements is 
received. 

Relation to other components • Connects to Training Service to start 

model training 

Related use cases 2 

Related requirements 11,12 

 

 

Table 19. Energy agent description 

Component Energy agent 

Description Energy Agent is deployed at the edge layer and 
works with the Node Controller to gain real-time 
insights into the energy consumption patterns of 
individual devices. 

Provided functionalities • Monitoring the energy consumption of 
the nodes in the network. 

Relation to other components • Forwards information about energy 
consumption to the cloud. 

Related use cases 2 

Related requirements not related to middleware requirements but it is 
needed for use case  

 

 

6 Conclusion 

This deliverable focuses on identifying the requirements and defining an initial architecture for a data-

driven orchestration middleware for AIoT that proposes the placement of ML services in the edge-to-

cloud continuum, taking into account 1) data streams originating from many heterogeneous IoT devices, 

and 2) the energy consumption of edge orchestration deployments supporting ML workflows. In addition 

to optimising the placement of containers running AI/ML algorithms considering the available resources, 

QoS constraints and overall energy consumption, the focus is also on managing ML workflows and data 

routing in the edge-to-cloud continuum. 

The work is initiated by analysing the state of the art of the three specific research domains relevant to 

the AIoTwin project and the data-driven orchestration middleware: Orchestration in the Edge-to-Cloud 

Continuum, Federated and Decentralised Learning, and Robust Energy-Efficient IoT. We have selected two 

areas for the use cases that will be further investigated to be used to test and evaluate the developed 
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middleware components and libraries. These are traffic management within a smart city context and 

energy-efficient environmental monitoring and data transmission for smart agriculture. For these two use 

case areas we detail specific research problems and devise a strategy to approach the problem. The reason 

for choosing these areas for use cases is that the project partners have experience in developing solutions 

in the stated areas and are familiar with the available datasets. Use case analysis forms the basis for 

identifying middleware requirements: 13 requirements have been identified which fall into the category 

of functional (management and monitoring) and non-functional (performance) requirements. Finally, we 

present the general architecture four our data-driven orchestration middleware for AIoT. The architecture 

includes generic components needed for both training and inference in the edge-to-cloud continuum; the 

components are deployed at both orchestrator and edge nodes. This generic architecture consists of six 

components for general-purpose orchestration extended by four components specifically tailored for the 

learning phase and three for inference. The general architecture is further refined and adapted to the 

requirements of specific use cases where the middleware is envisioned to be used for hierarchical FL and 

efficient real-time inference, either to guarantee specific QoS to clients in the context of traffic 

management or to minimise energy-consumption for the smart agriculture use case.   
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7 Acronyms 

AI Artificial Intelligence 

AIoT Artificial Intelligence of Things 

D&C Dissemination and Communication 

ECC Edge-to-Cloud Continuum 

FL Federated Learning 

GNN Graph Neural Network 

GPS Global Positioning System 

IoT Internet of Things 

ITS Intelligent Transportation Systems 

LPWAN Low Power Wide Area Network 

ML Machine Learning 

P2P Peer-to-peer  

QoS Quality of Service 

RSSI Received Signal Strength Indicator 

SNR Signal-to-noise ratio 

Wasm WebAssembly 
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